The dynamic stiffness of an air-spring
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Abstract

The measurement of the dynamic stiffness of an air sgtemgifies a behaviour which up until now is not
fully understood. Depending on whether the compression is isotherradiabatic the dynamic stiffness
differs by a factor of 1.4 for a perfect diatomic gas. THequency band in which the stiffness increase
takes place is determined by the heat conduction from the essgaf air to the air-spring wall. Since the
heat transport is diffusive, the change of stiffness hapmebe tin a surprisingly low frequency band,
ranging between 0.001 Hz and 0.1 Hz for a typical vehicle @ing To understand this dynamic
behaviour in detall, i.e. to find the temperature distrdsutvithin the spring, the energy equation must be
solved using the momentum and mass balance simultanedinityis done in an analytic manner by
considering only small disturbances from the initial presserapérature, and density, when the air is at
rest. The results show that an oscillating temperabunendary layer is formed in which the heat
conduction takes places. With increasing dimensionless fneguiee. Peclet number, the boundary-layer
thickness decreases and the stiffness approaches its adialhadi In theory there is no need to use a heat
transfer coefficient. Furthermore the theory serveswaayato determine the heat transfer coefficient. The
dimensionless transfer coefficient, i.e. the Nusselt rarmib useful when only the average temperature
and pressure are of interest. This is usually the casa the air spring is considered as a connecting part
between different masses in a dynamic system. It is fcaatdhie Nusselt number for the heat conduction
inside the air spring is a constamiy = 3.0).

1 Boundary conditions for the simplified geometry

The one dimensional problem the most simple geometric model afr sspring is considered: two,
plane, infinite plates with the initial separation dist h,, one of which (the upper) is set into

harmonic oscillation perpendicular to its plane at frequef = w/(2/7) and amplitudeAh (see
figure 1). Since the plates are infinite large (or #teral extension is much greater tHay) only the
velocity componenv in the normaly -direction must be considered.
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Figure 1: Model geometry

The temperature of the upper plate is consignt the lower plate is insulated. If there would béa |

of symmetry aty =0, the problem would be equivalent. Hence, the boundary eomslifor the
unknown velocity and temperature profile are:

u(y=0)=0
u(y =h, +Ahcosu ))= —Ahw singt )
T(y=h,+Ahcost )=T, 1)

5.7
oy y=0

The gas between the plates is considered to be edlprand thermally perfect (adiabatic expongnt
ideal gas constariR). The dynamic viscosityy and the heat conductivity are constant. Like the gas

velocity, the gas temperatufle, density 0 , and pressurg = pRT depend only on the independent
variablesy and timet.

2 The dynamic stiffness as a function of the unknown heat transfer coefficient

In a first step the dynamic stiffness of the air springeisved by considering only average values for
temperaturél , pressurep, and densityp . Considering a gas volume reaching frgns O to

y =h=h, + Ahcost), the integral form of the conversation of mass andggreecomes

0,
0. )

ph+ ph
ph+yph+(y-Da (T -T,)

(For convenience the partial differen@dlot is denoted here by a dot). The tera(T —T,)

represents the unknown heat flux from the air to the upper vwalowing Newton, the heat flux is
proportional to the temperature difference, wherés the heat transfer coefficient on the wall:



q, =a(T -T). 3)

In the next section the value of the Nusselt nuniNar=ah,/ A will be given. The nonlinear system
(2) is linearised using the ansatz

h=h, +h=hy(1+h'€“),

T=T,+T =T,(L+T "),

P =P+ P = po(l+ p ),

P=poRTy + PRT,+ pRT = py+ p= p 1+ p'e™). (@)
The initial values are described by the index “0”. They assumed to be much greater than the
perturbation quantities marked with a tildér" =Ah/h, =h/h, describes the dimensionless
displacement plate distanc&’ =T /T,, p" =p/p,, p° =P/ p, the dimensionless perturbation

values of temperature, pressure, and density.

Inserting (4) into (2) and neglecting all perturbation teofrisigher order than one, results in:

p++h+ — 0,
. a
p+yh' =i (y-1) TT" = 0,
wPohy
p+ — p+ +T+. (5)

If we choosec, = p,/h, as a reference stiffness at low frequencies, the dynatifiness of the

devicec=p/h becomes

C+:£:E&:p_+: iyNu/Pe-y

¢, hp, h* -iyNu/Pet+1 (6)

Other than the Nusselt number, the Peclet numbee isitdst important dimensionless product. Here it is
convenient to interpret the Peclet number as a dimenssdinézgiency.

2
Nu :ﬂ , Pe & (7)
p M(p,C,)

(C, .G, stands for the specific heat at constant pressure, eolaspectively). The typical time of the

phase change from isothermal to adiabatic ish)cp,oola. Thus we can write (6) in the equivalent
form

_ 1+i wr

(8)

1+1iwr

(in control systems Equation (8) describes a phase liftiniy) The Bode diagram (dynamic stiffness
and phase angle) for the air spring is shown in figure 2.



loglc* | A Frequency amplitude ilm(c*)
characteristic
log(¥)
0,
1 log(7) log(e) ! 7 Ree?)
o Frequency phase .
5 characteristic v (O )T | Oy IN
e 1.00 1.00 0.00
1.40 1.18 9.59
1.67 1.29 14.48
0 i >
1/2 log(y) ~ lo9(@T)

Figure 2: Bode diagram for the air spring

3 The unsteady temperature field

In a second step a method to determine the dynamic stiffneeseded without using the heat transfer
coefficient. This can only be done by calculating the udgteéamperature field. Thus the equations for
conservation of mass, momentum, and energy in differdatial must be solved:

p+(pv) = 0
pU+ puu' = —p+pu"
- ' p ' p [ n
pT+c puT'——p-——up' = AT
G G 0P o
P =  pRT. )

(For convenienc@/dy is noted here and in the following by a dash). The viscogitiakes the
pressure viscosity], into account:

. _ 4 5o 1 A
=2p+n, - Pr= D="
n 3/7 o 0,D c.p (10)

D stands for heat conductivity number. According to Euckdhercase of vanishing pressure
viscosity the Prandtl number is a functionjof

|E>r = ﬂ(i) _

A closed solution of the nonlinear problem (11) together witmdary conditions (1) is only feasible,
if only small perturbations are considered:



u(y,t)=0(y,t),

T(y,t) =T, +T(y.t),

plyt)=p,+p(y.1),

p(Y.t) = p, + P(Y.1). (12)

Inserting (12) into (9) and neglecting all perturbation terfreaer higher than one, the result is:

b + poljl = O’
po = ~pi0"
oT-RLp = AT",
o = PRT +p,RT, p,=p,RT,. (13)

In addition, the boundary conditions have to be linearised, laysnef a Taylor expansion:

o(h) =-chsinat , 0(0)= 0

Ty=0 , T()=o0. 4

Since there is no boundary condition for the pressure and thityddrey are eliminated from (13)

,005 poa "= poR-I: I"'ﬁlj'I'

c,o.T+p0 AT (15)

To solve the system it is convinient to transforme i ithte frequency range. The complex notation shall
be used and only the physical meaning of the real parliés va

a(y,t) =i hwe”'g(y*),
T(y,t) =T,e°'3(y"). (16)

Here y" = y/h, is the dimensionless coordinate, the dimensionless completicima(y"), F(y")

are the (dimensionless complex amplitudes of) velocity eamgérature respectively at the positiph
With the ansatz (16) the system of partial differentigliadions (13) become a system of ordinary
differential equation system in the unknown functighend & :

h*(«?+i y PeP)g +y PE'g-K%9 '= 0,
y9"-iPe - i(y-) Pé'g * = 0 (17)

The dimensionless plate distange= ah, / D is built by the sonic velocity =,/ yRT, of the gas and the

conductivity numberD s introduced. From (14) it follows that the boundary coont are transformed
to



pO=1 . $(0= 0|

S()=0 , 9'0)= 0| (18)
To solve the system (17), (18), the ansatz
@ e (19

is used. This leads to an eigenvalue problem. The founegees and the accessory eigenvectors are

iK? - (y+Pr) Pet\/{ i~ g+ PryPe+ 42 Pe )4 Prpe

1
=+4= = , (20
thaaa 2 k?[Pe+ iy Pr (20)
2-iPe
=1, 1, =- W, —, =14
i (y—1)Peh’ 1 (1)
The linear combination of the four different solutions gives:
2 -
p A . yu; —1Pe )
(19)=Zaj i (y-1)Peh’y, exp(,ujy )
= 1 (22)
The unknown coefficientsy; are determined by the boundary conditions (18)
2 _: 2
1 A | yu; —iPe 0 . . yu; —1 P?
( )=Zaj i (y-1)Peh’y, exp(,uj), ( ):Zaj i (y-1)Peh’u,
0) = 0) = 23)
1 K,

Resultant are the now known veloditfy,t) and temperatur& (y,t) fields. The pressure and density
obtained from (13) are:

Ezi(ﬁ—_iﬁ")exp(iax), L -T2 (9-n'g) exsitt )
o, v-1 e P To P (24)

(25)

As expectedc” does not depend on the dimensionless amplitiidike it has to be in a linear case.
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Figure 3: Bode diagram of the solution (25) foF10°, y=1.4.

Figure 3 shows a typical Bode-diagram of solution (25)Aor1C® in the relevant Peclet-range. The
phase lifting behaviour, already inspected in sections2qualitatively present. The isothermal and
adiabatic / isentropic limiting values in the sum of dlaenittance function are confirmed.
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Figure 4: Amplitude field of the temperature, density pressure
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Figure 4 shows the amplitude field of the temperature, iyeant pressure at different Peclet-numbers.
For Peclet-values lower than 0.1 there is only a smalhgh of temperaturp?(y*) | over the channel

height. For increasing Peclet-values (frequencies)diadtion of a boundary layer becomes visible. For
a Peclet-number of 1000, the heat conduction is restrictedbmundary layer thickness of 20% of the
plate distance.
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Fgure 5: Bode diagram; comparison of the solutions (6) andd@&};mination of the Nusselt-number

By comparing the dynamic stiffness versus frequency of modedn(@)(25) a Nusselt-relation can be
found. The Nussel-number is a constant of approx. 3.0. Figsi®ws a very good correlation of both
models at Peclet numbers up to one. As long &> Pe is valid, both models show the same asymptotes
for high and low Peclet numbers.

If the Peclet number is of the order of the dimensionleaglpdistance, model (25) shows a behaviour
which cannot be explained by the homogeneous model (6): the resu#th(®8$ a drop of the dynamic
stiffness when the Peclet number comes close to the siiomess plate distance (see figure 5). This
can be understood by looking at the pressure profiles in f@gatehigh Peclet-numbers. The bending of
the pressure profile shows the initial formation of a stapgressure wave between the walls. This
isentropic limiting case can be studied by neglectingfiiscdon term in the momentum equation and

replacing the energy equation by the isentropic relapgn” = const . Doing so, yields

c =-y X , with XS:E.
tan(X,) K

(26)

The dynamic stiffness for



X,=—=n—-, n=0,2,4.
“ (27)
becomes singular, i. e. rigid, and for
XS=EE=ng,n=L&5.
“ (28)

ideal soft. As has been said: standing waves are formirgelrigid case a velocity knot is formed near
the upper wall. This is only compatible with the boundary d¢adat this plate if the velocity in the field
becomes singular. In the isentropic case, the complex iebroplitude becomes

sin(X,y")

20 = "G 29)



